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ABSTRACT
Sophisticated methods (CFD analyses) are used more and more for the analysis of gas seal forces. However,

for some types of seals such as honeycomb or hole pattern seals bulk-flow models are still the only feasible way.
Ha and Childs introduced such a model in their paper [4]. The entrance loss factor in their model is constant,
what apparently leads to an incomplete consideration of the Lomakin effect. Comparison to measured results
shows considerable deviation for the radial forces in annular gas seal.

The present paper is dedicated to investigation of the cause of this deviation. For this purpose an extended
model for entry conditions is proposed. The entrance loss factor is considered as a function of the seal clearance.
Numerical computations of the pressure loss at the entrance of the gas seal using the FLUENT code are
performed. The seal gap and the surrounding zones are considered in the solution of the Reynolds-averaged
Navier-Stokes system with k-ω turbulence model.

The obtained results are used as the boundary conditions for the bulk-flow seal model. This technique
improves the algorithm for finding the basic characteristics of the seal, leading to better coincidence of
calculated and experimental results. In particular it improves such important parameter as the direct stiffness.
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1   INTRODUCTION
Various types of seals are used in turbomachines to limit leakage between regions with different pressures. In

practice, some vibration problems were eliminated with annular honeycomb-stator seals. As related to rotor
dynamics, seal analysis has the objective of determining the reaction force acting on the rotor as a result of the
shaft motion. For small motion about a centered position, the relation between the reaction-force components
and the shaft motion can be written as
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Here X and Y are the displacement components of the seal rotor relative to the stator; Fx and Fy are the
components of the reaction force acting on the rotor. The direct stiffness K, cross-coupled stiffness k, direct
damping C, and cross-coupled damping c are referred as rotor dynamic coefficients.

Nelson [1] developed the governing equations for surface-roughened annular gas seals based on Hirs’s
turbulent bulk-flow model [2]. Nelson uses fully developed flow friction factor throughout the seal. An abrupt
loss at the seal entrance models the high friction in the developing flow region of the seal. In another bulk-flow
gas seal analysis, Elrod et al. [3] entrance and exit region friction factor models based on tests of smooth- and
honeycomb-stator seals are used. Ha and Childs [4] proposed modeling the fluid within the seal in a two-control-
volume fashion. Subsequently, Kleynhans and Childs [5] developed a new analytical technique for determining
dynamic coefficients of the seal based on the two-control-volume model. This analysis used a conventional
control volume for the through flow of the fluid and a “capacitance accumulator” model for the individual
honeycomb cell. The control volume for the honeycomb cell drops the acoustic velocity of the main fluid flow
within the frequency range of interest in rotordynamics, thus causing the dynamic coefficients to become
frequency dependent.

The above theories predict generally well the gradient pressure, seal leakage and direct damping. However,
the cross-coupled stiffness and especially the direct stiffness are predicted poor. The present paper introduces an
extension of Ha and Childs model leading to better prediction of direct stiffness. The modeling procedure is
divided into two parts. In the first part the Reynolds-averaged Navier-Stokes equations with k–ω turbulence
model are used to determine the pressure drop on the entrance of the seal. In the second part the two-control
volume bulk flow model is applied with regard to computed input pressure drop coefficient.

2   GOVERNING EQUATIONS
Let us introduce dimensionless parameters (the bar above the variable points out the dimension values)
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where p is gas pressure; pin is reservoir pressure; h is seal clearance; c0 is nominal radial clearance; u  and w
is bulk-flow fluid velocity components in circumferential direction ϕ  and axial one z; TRu gm =  is isothermal
sonic speed (Rg – gas constant, T – temperature); L is seal length; ω is shaft rotational velocity.

The dimensionless transformed version of governing equations of the two-control-volume model for annular
gas seal has the following form.

Continuity equation
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where dh  is the honeycomb cell depth,

Axial-Momentum Equation
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Circumferential-Momentum Equation
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Wall shear-stresses τij are modeled via bulk-flow theory of Hirs
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where the subscript s is used for the stator surface, r is used for the rotor one; circumferential velocities
relative to the stator and rotor are Uuu,uu rs −==  (U=ωR, R is the seal radius); ni and mi are empirical
constants of Hirs’ turbulent model. The equations (3)-(6) include dimensionless complexes: Strouhal number
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The flow through the seal is considered as isothermal [5].
The entrance-loss equation (z=0) is added as boundary condition

2pw
2
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and exit-recovery equation (z=1) has the form
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Here ξ is the inlet pressure-loss coefficient (entrance-loss coefficient), η is the exit recovery coefficient (it
was assumed that η=1) and ре is dimensionless sump pressure. The condition (8) is valid until the Mach number
remains less than one for unchoked flow. If the Mach number at the exit reaches one for choked flow, the exit
pressure remains different from the sump pressure and the condition (8) is not valid. In this case the condition
w1 (1) =0 is used for the first-order equations instead of (8) (see next section). Also we specify the boundary
condition for u (preswirl) at the point z=0.

3   SOLUTION PROCEDURE

3.1 Perturbation analysis
Assuming small motion of the rotor about its geometric center, the pressure, axial velocity, circumferential

velocity, and local seal clearance can be expanded in terms of zeroth-order and first-order perturbation variables

10101010 hhh,uuu,www,ppp εεεε +=+=+=+= . (9)

where 0ce=ε  is the eccentricity ratio. Special about our approach to the problem is the assumption that the
inlet pressure-loss coefficient ξ depends on local seal clearance, which varies around the circumference. Hence,
we write similar to (9)

10 εξξξ += ,

where ξ1 is determined by the expression
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Here the subscript “0” points out zero-eccentricity flow condition.
We now assume that the shaft is moving on a circular orbit around the centered position. Also h1 takes the

form

)tcos(h1 Ωϕ −= ,

where Ω is the whirl ratio, i. e. the ratio of the shaft whirl velocity to the shaft rotational velocity.
Substitution of these perturbed variables into the governing equations and the boundary conditions yield

zero-order and first-order problems. Zero-order equations are nonlinear. They are numerically integrated using
the Runge-Kutta method to obtain matched boundary conditions at the seal exit. First-order equations are linear.
They are reduced to two Cauchy problems for a system of ordinary differential equations relative to functions
dependent only on the axial coordinate z. These problems are solved by the Runge-Kutta method as well. The
resulting forces on the shaft are calculated by perturbed pressure integration for a few discrete frequencies. We
obtain the rotordynamic coefficients of (1) with use of least-square curvefits. All procedures are similar to those
written in [5].

3.2 Determination of the entrance-loss coefficient

The pressure drop in the entrance of the seal is caused by the flow separation on the front edge of the seal and
subsequent eddy generation in the entrance region. It is less connected with the flow regime inside the seal. In
this connection we will consider a plane annular seal with axial symmetry and smooth stator surface for the
determination of the entrance pressure drop. The computation domain includes seal gap with adjoining areas as
shown on the Figure 1. It is two-dimensional because of axial symmetry. In that whole domain we solve the
Reynolds-averaged Navier-Stokes equations with k–ω turbulence model. This model is fitted for simulation of
wall-bounded flows with big lengthwise pressure drops. The inlet pressure pin and the outlet pressure pout are set
respectively on the input and output boundaries of domain. No slip conditions are set on all walls (thick lines in
Figure 1). The computations were performed with the help of FLUENT code.
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ap with adjoining domains.

Seal Data:

al symmetry and smooth stator surface

Gas: air

26.8=in  bar

01.1=out  bar

T=302 K 0

0 =0.41 mm

L=50.8 mm

=151.4 mm

ference formula

( ) ( ) ( )b0a ccc γξβξαξ ++                                                 (10)
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f clearance. The reason for this choice is the availability of
ere used for validation of the FLUENT computations.

(H2), where H=max(Ha,Hb). The dependence of the results
tions.

 results as the average values in the entrance section of the
icient ξ  from (7) for given seal clearance. Very fine
on of ξ . The computational grid with two hundreds of
ture of the computational grid is illustrated on Figure 2.
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Figure 2: CFD computational grid.

The fragment of computational grid at the entrance region of the seal is illustrated on Figure 3.

           
Figure 3: CFD computational grid (fragment)

4   CALCULATION RESULTS
Figures 4 and 5 illustrate the pressure variation along the seal gap when Mach number at the exit of the seal

is less than one or reaches one, respectively. Figure 4 corresponds to the case then pin=7.8 bar and pout=3.5 bar
(unchoked flow). Figure 5 corresponds to the same seal geometry and pin=8.26 bar; pout=1.01 bar that leads to the
choked flow. As we can see in Figure 4 for unchoked flow the exit pressure is equal to sump pressure pout,
otherwise (Figure 5) the pressure really has a “jump”. This “jump” is caused by the fact that the disturbance
could not spread upstream when the flow velocity at the exit reaches the sonic velocity value. So the flow inside
the seal does not “feel” the change of pressure at the reservoir.

Figure 4: Pressure along the seal gap. (unchoked flow).
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Figure 5: Pressure along the seal gap. (exit Mach number reaches one).

Figure 6 illustrates the velocity at the entrance section of the seal.

Figure 6: Velocity at the entrance section.

The values of entrance-loss coefficient ξ  for diverse seal clearances are presented in Table 1.

Table 1: Entrance-loss coefficient for diverse seal clearances

Derivative 
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∂ξ at 41.0c0 =  mm is equal to 0,3406.

 Table 2 and Figure 7 show comparisons of predicted and experimental values of K. The experimental data
(dots) were taking from the article [3].

In addition to the analysis described above we use the following seal data for the honeycomb seal [3]:

=dh 1.91 mm

mr=-0.299, nr=0.154

ms=-0.128, ns=0.295.

Here dh  is the honeycomb cell depth; ni and mi are empirical constants of Hirs’ turbulent model.

h (mm) ξ
0,3 1,1941

0,41 1,2305
0,6 1,2983
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 We calculated the predicted values on two ways: with ξ=const (solid line) and with ( )hξξ =  (dashed line).

Table 2: Relationship between direct stiffness and preswirl
K (N/mm)

Preswirl Experiment
[3] ξ=const ξ=ξ(h)

0 200 -259,78 215,21
0,2 — -275,35 207,69
0,4 320 -275,41 211,07
0,6 — -277,11 203,01
0,8 — -278,24 200,18
1 340 -273,57 202,70

The same results are plotted in Figure 7
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Figure 7: Direct stiffness as function of preswirl; experimental [3] (dots), constant entrance-loss coefficient
(solid line), variable entrance-loss coefficient (dashed line); rotor speed 9500 cpm.

As we can see, taking into account the dependence ( )hξξ =  in the seal model decreases the disagreement
between experiment and numerical analysis. Possibly, the further improvement of this approach will allow even
better agreement of the numerical results with experimental data. In particular, the optimization of the formula
(10) has potential for further improvement.

The change of other rotordynamic coefficients due to dependence ( )hξξ =  is about 5 percent.

5   CONCLUSION

This paper presents a new approach to seal analysis that combines bulk flow model with direct CFD
simulation of the flow in the seal gap and surrounding areas. As a result we obtain much better coincidence of
honeycomb seal direct stiffness with the experiment. This progress was made at the expense of a far more
complicated analysis including accurate CFD simulations. On other hand this approach does not require 3-D
simulation of the flow. Thus it does not need excessive computational resources such as multiprocessor
computers.
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